Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatterer density

1985
142-160--
B. Oosterveld, J. Thijssen and W. Verhoef

B-mode echograms were simulated by employing the impulse response method in transmission and reception using a discrete scatterer tissue model, with and without attenuation. The analytic signal approach was used for demodulation of the RF A-mode lines. The simulations were performed in 3-D space and compared to B-mode echograms obtained from experiments with scattering tissue phantoms. The average echo amplitude appeared to increase towards the focus and to decrease beyond it. In the focal zone, the average amplitude increased proportionally to the square root of the scatterer density. The signal to noise ratio (SNR) was found to be independent of depth, i.e., 1.91 as predicted for a Rayleigh distribution of gray levels, although a minimum was found in the focal zone at relatively low scatterer densities. The SNR continuously increased with increasing scatterer density and reached the limit of 1.91 at relatively high densities (greater than 10(4) cm-3). The lateral full width at half maximum (FWHM) of the two dimensional autocovariance function of the speckle increased continuously from the transducer face to far beyond the focus and decreased thereafter due to the diffraction effect. The lateral FWHM decreased proportionally to the logarithm of the scatterer density at low densities and reached a limit at high densities. Introduction of attenuation in the simulated tissue resulted in a much more pronounced depth dependence of the texture. The axial FWHM was independent of the distance to the transducer to a first approximation and decreased slightly with increasing scatterer density until a limit was reached at densities larger than 10(3) cm-3. This limit was in agreement with theory. The experiments confirmed the simulations and it can be concluded that the presented results are of great importance to the understanding of B-mode echograms and to the potential use of the analysis of B-mode texture for tissue characterization

Overige afdelingen Imaging