In Vivo Comparison of Pulse Wave Velocity Estimation Based on Ultrafast Plane Wave Imaging and High-Frame-Rate Focused Transmissions.
M. van den de Bos-van Steeg, S. Fekkes, A. Saris, C. de Korte and H. Hansen
Ultrasound-based local pulse wave velocity (PWV) estimation, as a measure of arterial stiffness, can be based on fast focused imaging (FFI) or plane wave imaging (PWI). This study was aimed at comparing the accuracy of in vivo PWV estimation using FFI and PWI. Ultrasound radiofrequency data of carotid arteries were acquired in 14 healthy volunteers (25-57 y) by executing the FFI (12 lines, 7200 Hz) and PWI (128 lines, 2000 Hz) methods consecutively. PWV was derived at two time-reference points, dicrotic notch (DN) and systolic foot (SF), for multiple pressure cycles by fitting a linear function through the positions of the peaks of low-pass filtered wall acceleration curves as a function of time. The accuracy of PWV estimation was determined for various cutoff frequencies (10-200 Hz). No statistically significant difference was observed between PWVs estimated by both approaches. The PWV and R at DN were higher, on average, than those at SF (PWV/R : FFI SF 5.5/0.92, FFI DN 6.1/0.92; PWI SF 5.4/0.89, PWI DN 6.3/0.95). The use of cutoff frequencies between 40 and 80 Hz provided the most accurate PWVs. Both methods seemed equally suitable for use in clinical practice, although we have a preference for the PWV at DN given the higher R values.